PyTorch Lightning 是一个为 PyTorch 模型训练带来结构的框架。它旨在避免样板代码,这样你在构建新模型时就不必一遍又一遍地编写相同的训练循环。

try-anyscale-quickstart

PyTorch Lightning 的主要抽象是 LightningModule 类,你的应用应该继承这个类。这里有 一篇关于如何将你的模型从原生 PyTorch 转移到 Lightning 的优秀文章

../../_images/pytorch_lightning_full.png

PyTorch Lightning 的类结构使得定义和调优模型参数变得非常容易。本教程将以训练 MNIST 分类器为例,展示如何将 Tune 与 Ray Train 的 TorchTrainer 结合使用,为你的应用找到最佳参数集。值得注意的是,为此目的,LightningModule 无需做任何修改——因此,你可以即插即用地用于现有模型,前提是它们的参数是可配置的!

注意

要运行此示例,你需要安装以下内容

用于 MNIST 的 PyTorch Lightning 分类器

$ pip install -q "ray[tune]" torch torchvision pytorch_lightning

我们首先从 MNIST 分类器的基本 PyTorch Lightning 实现开始。目前,这个分类器不包含任何调优代码。

首先,我们进行一些导入

我们的示例基于我们之前提到的 博客文章 中的 MNIST 示例。我们将原始模型和数据集定义改编为 MNISTClassifierMNISTDataModule

import os
import torch
import tempfile
import pytorch_lightning as pl
import torch.nn.functional as F
from filelock import FileLock
from torchmetrics import Accuracy
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
from torchvision import transforms

定义一个训练函数,该函数使用 Ray Train 工具创建模型、数据模块和 Lightning trainer。

class MNISTClassifier(pl.LightningModule):
    def __init__(self, config):
        super(MNISTClassifier, self).__init__()
        self.accuracy = Accuracy(task="multiclass", num_classes=10, top_k=1)
        self.layer_1_size = config["layer_1_size"]
        self.layer_2_size = config["layer_2_size"]
        self.lr = config["lr"]

        # mnist images are (1, 28, 28) (channels, width, height)
        self.layer_1 = torch.nn.Linear(28 * 28, self.layer_1_size)
        self.layer_2 = torch.nn.Linear(self.layer_1_size, self.layer_2_size)
        self.layer_3 = torch.nn.Linear(self.layer_2_size, 10)
        self.eval_loss = []
        self.eval_accuracy = []

    def cross_entropy_loss(self, logits, labels):
        return F.nll_loss(logits, labels)

    def forward(self, x):
        batch_size, channels, width, height = x.size()
        x = x.view(batch_size, -1)

        x = self.layer_1(x)
        x = torch.relu(x)

        x = self.layer_2(x)
        x = torch.relu(x)

        x = self.layer_3(x)
        x = torch.log_softmax(x, dim=1)

        return x

    def training_step(self, train_batch, batch_idx):
        x, y = train_batch
        logits = self.forward(x)
        loss = self.cross_entropy_loss(logits, y)
        accuracy = self.accuracy(logits, y)

        self.log("ptl/train_loss", loss)
        self.log("ptl/train_accuracy", accuracy)
        return loss

    def validation_step(self, val_batch, batch_idx):
        x, y = val_batch
        logits = self.forward(x)
        loss = self.cross_entropy_loss(logits, y)
        accuracy = self.accuracy(logits, y)
        self.eval_loss.append(loss)
        self.eval_accuracy.append(accuracy)
        return {"val_loss": loss, "val_accuracy": accuracy}

    def on_validation_epoch_end(self):
        avg_loss = torch.stack(self.eval_loss).mean()
        avg_acc = torch.stack(self.eval_accuracy).mean()
        self.log("ptl/val_loss", avg_loss, sync_dist=True)
        self.log("ptl/val_accuracy", avg_acc, sync_dist=True)
        self.eval_loss.clear()
        self.eval_accuracy.clear()

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer


class MNISTDataModule(pl.LightningDataModule):
    def __init__(self, batch_size=128):
        super().__init__()
        self.data_dir = tempfile.mkdtemp()
        self.batch_size = batch_size
        self.transform = transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )

    def setup(self, stage=None):
        with FileLock(f"{self.data_dir}.lock"):
            mnist = MNIST(
                self.data_dir, train=True, download=True, transform=self.transform
            )
            self.mnist_train, self.mnist_val = random_split(mnist, [55000, 5000])

            self.mnist_test = MNIST(
                self.data_dir, train=False, download=True, transform=self.transform
            )

    def train_dataloader(self):
        return DataLoader(self.mnist_train, batch_size=self.batch_size, num_workers=4)

    def val_dataloader(self):
        return DataLoader(self.mnist_val, batch_size=self.batch_size, num_workers=4)

    def test_dataloader(self):
        return DataLoader(self.mnist_test, batch_size=self.batch_size, num_workers=4)
default_config = {
    "layer_1_size": 128,
    "layer_2_size": 256,
    "lr": 1e-3,
}

调优模型参数#

from ray.train.lightning import (
    RayDDPStrategy,
    RayLightningEnvironment,
    RayTrainReportCallback,
    prepare_trainer,
)


def train_func(config):
    dm = MNISTDataModule(batch_size=config["batch_size"])
    model = MNISTClassifier(config)

    trainer = pl.Trainer(
        devices="auto",
        accelerator="auto",
        strategy=RayDDPStrategy(),
        callbacks=[RayTrainReportCallback()],
        plugins=[RayLightningEnvironment()],
        enable_progress_bar=False,
    )
    trainer = prepare_trainer(trainer)
    trainer.fit(model, datamodule=dm)

上面的参数应该已经能让你获得超过 90% 的良好准确率。但是,我们可以通过改变一些超参数来进一步提高准确率。例如,如果我们使用更小的学习率和更大的中间层尺寸,可能会获得更高的准确率。

与其手动遍历所有参数组合,不如使用 Tune 系统地尝试参数组合,并找到性能最佳的参数集。

首先,我们需要一些额外的导入

配置搜索空间#

from ray import tune
from ray.tune.schedulers import ASHAScheduler

现在我们配置参数搜索空间。我们希望在不同的层尺寸、学习率和批量大小之间进行选择。学习率应该在 0.00010.1 之间均匀采样。 tune.loguniform() 函数是语法糖,使得在不同数量级之间采样更容易,特别是我们也能采样较小的值。 tune.choice() 也是如此,它从所有提供的选项中采样。

选择调度器#

search_space = {
    "layer_1_size": tune.choice([32, 64, 128]),
    "layer_2_size": tune.choice([64, 128, 256]),
    "lr": tune.loguniform(1e-4, 1e-1),
    "batch_size": tune.choice([32, 64]),
}

在此示例中,我们使用 异步 Hyperband 调度器。此调度器在每次迭代时决定哪些试验可能表现不佳,并停止这些试验。这样我们就不会浪费资源在不良的超参数配置上。

如果你有更多可用资源,可以相应地修改上述参数。例如,更多 epoch,更多参数采样。

# The maximum training epochs
num_epochs = 5

# Number of samples from parameter space
num_samples = 10

使用 GPU 进行训练#

scheduler = ASHAScheduler(max_t=num_epochs, grace_period=1, reduction_factor=2)

我们可以指定 Tune 应该为每个试验请求的资源数量,包括 GPU。

TorchTrainer 负责分布式数据并行训练的环境设置,模型和数据将自动分布到各个 GPU。你只需要在 ScalingConfig 中设置每个 worker 的 GPU 数量,并在训练函数中设置 accelerator="auto"

整合代码#

from ray.train import RunConfig, ScalingConfig, CheckpointConfig

scaling_config = ScalingConfig(
    num_workers=3, use_gpu=True, resources_per_worker={"CPU": 1, "GPU": 1}
)

run_config = RunConfig(
    checkpoint_config=CheckpointConfig(
        num_to_keep=2,
        checkpoint_score_attribute="ptl/val_accuracy",
        checkpoint_score_order="max",
    ),
)
from ray.train.torch import TorchTrainer

# Define a TorchTrainer without hyper-parameters for Tuner
ray_trainer = TorchTrainer(
    train_func,
    scaling_config=scaling_config,
    run_config=run_config,
)

最后,我们需要创建一个 Tuner() 对象,并使用 tuner.fit() 启动 Ray Tune。完整的代码如下

隐藏代码单元格输出

def tune_mnist_asha(num_samples=10):
    scheduler = ASHAScheduler(max_t=num_epochs, grace_period=1, reduction_factor=2)

    tuner = tune.Tuner(
        ray_trainer,
        param_space={"train_loop_config": search_space},
        tune_config=tune.TuneConfig(
            metric="ptl/val_accuracy",
            mode="max",
            num_samples=num_samples,
            scheduler=scheduler,
        ),
    )
    return tuner.fit()


results = tune_mnist_asha(num_samples=num_samples)
Tune 状态

当前时间

运行时间2023-09-07 14:03:52
内存00:05:13.92
20.5/186.6 GiB系统信息

使用 AsyncHyperBand: num_stopped=10

Bracket: Iter 4.000: 0.9709362387657166 | Iter 2.000: 0.9617255330085754 | Iter 1.000: 0.9477165043354034
逻辑资源使用:4.0/48 CPU,3.0/4 GPU (0.0/1.0 accelerator_type:None)
试验状态

试验名称

状态位置train_loop_config/ba tch_sizetrain_loop_config/la yer_1_sizetrain_loop_config/la yer_2_sizetrain_loop_config/lr迭代次数总时间 (s)ptl/train_lossptl/train_accuracyptl/val_lossTorchTrainer_5144b_00000
TERMINATEDTorchTrainer_5144b_0000110.0.0.84:63990 32 64256 0.0316233 5 29.3336 0.973613 0.766667 0.580943
TorchTrainer_5144b_00002TorchTrainer_5144b_0000110.0.0.84:71294 64128 64 0.0839278 1 12.2275 2.19514 0.266667 1.56644
TorchTrainer_5144b_00003TorchTrainer_5144b_0000110.0.0.84:73540 32 64256 0.000233034 5 29.1314 0.146903 0.933333 0.114229
TorchTrainer_5144b_00004TorchTrainer_5144b_0000110.0.0.84:80840 64128 64 0.00109259 5 21.6534 0.0474913 0.966667 0.0714878
TorchTrainer_5144b_00005TorchTrainer_5144b_0000110.0.0.84:88077 32 32128 0.00114083 5 29.6367 0.0990443 0.966667 0.0891999
TorchTrainer_5144b_00006TorchTrainer_5144b_0000110.0.0.84:95388 32 64 64 0.00924264 4 25.7089 0.0349707 1 0.153937
TorchTrainer_5144b_00007TorchTrainer_5144b_0000110.0.0.84:10143432128256 0.00325671 5 29.5763 0.0708755 0.966667 0.0820903
TorchTrainer_5144b_00008TorchTrainer_5144b_0000110.0.0.84:10875032 32 64 0.000123766 1 13.9326 0.27464 0.966667 0.401102
TorchTrainer_5144b_00009TorchTrainer_5144b_0000110.0.0.84:11101964128256 0.00371762 5 21.8337 0.00108961 1 0.0579874
在上面的示例中,Tune 运行了 10 个具有不同超参数配置的试验。TorchTrainer_5144b_0000110.0.0.84:11825532128128 0.00397956 5 29.8334 0.00940019 1 0.0685028
(TrainTrainable pid=63990) 2023-09-07 13:58:43.025064: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=63990) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(TrainTrainable pid=63990) 2023-09-07 13:58:43.165187: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=63990) 2023-09-07 13:58:43.907088: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=63990) 2023-09-07 13:58:43.907153: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=63990) 2023-09-07 13:58:43.907160: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=63990) Starting distributed worker processes: ['64101 (10.0.0.84)', '64102 (10.0.0.84)', '64103 (10.0.0.84)']
(RayTrainWorker pid=64101) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=64102) 2023-09-07 13:58:50.419714: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=64102) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64101) 2023-09-07 13:58:50.419718: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=64101) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64102) 2023-09-07 13:58:50.555450: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=64102) 2023-09-07 13:58:51.317522: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=64102) 2023-09-07 13:58:51.317610: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=64102) 2023-09-07 13:58:51.317618: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=64102) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=64101) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=64101)   rank_zero_warn(
(RayTrainWorker pid=64101) GPU available: True, used: True
(RayTrainWorker pid=64101) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=64101) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=64101) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=64102) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
(RayTrainWorker pid=64102) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpydcy4598/MNIST/raw/train-images-idx3-ubyte.gz
100%|██████████| 9912422/9912422 [00:00<00:00, 120812916.07it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 101305832.98it/s]
(RayTrainWorker pid=64102) Extracting /tmp/tmpydcy4598/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/tmpydcy4598/MNIST/raw
(RayTrainWorker pid=64102) 
(RayTrainWorker pid=64102) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=64101) 
(RayTrainWorker pid=64101)   | Name     | Type               | Params
(RayTrainWorker pid=64101) ------------------------------------------------
(RayTrainWorker pid=64101) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=64101) 1 | layer_1  | Linear             | 50.2 K
(RayTrainWorker pid=64101) 2 | layer_2  | Linear             | 16.6 K
(RayTrainWorker pid=64101) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=64101) ------------------------------------------------
(RayTrainWorker pid=64101) 69.5 K    Trainable params
(RayTrainWorker pid=64101) 0         Non-trainable params
(RayTrainWorker pid=64101) 69.5 K    Total params
(RayTrainWorker pid=64101) 0.278     Total estimated model params size (MB)
(RayTrainWorker pid=64102) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(autoscaler +7m33s) [autoscaler] Current infeasible resource requests: {"resourcesBundle":{"bundle_group_289661bddaad4820732f117e33d702000000":0.001}}, {"resourcesBundle":{"bundle_group_d14ed93ffcb267f77984fc5e097c02000000":0.001}}, {"resourcesBundle":{"bundle_group_9d0f0584af89d9185ad87362359402000000":0.001}}, {"resourcesBundle":{"bundle_group_b8fdebe2246b003d6e5d0451465b02000000":0.001}}, {"resourcesBundle":{"bundle_group_35d0a11b5707ef020363a907e5fc02000000":0.001}}, {"resourcesBundle":{"bundle_group_ba2b3c448809cad351fc7dc545a402000000":0.001}}, {"resourcesBundle":{"bundle_group_05283c0cbfbb775ad68aacf47bc702000000":0.001}}, {"resourcesBundle":{"bundle_group_2cd0e3d931d1e356a1ab0f3afb6a02000000":0.001}}, {"resourcesBundle":{"bundle_group_14f2bd9329dfcde35c77e8474b0f02000000":0.001}}
(RayTrainWorker pid=64102) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=64103) 2023-09-07 13:58:50.448640: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=64103) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64101) 2023-09-07 13:58:50.555450: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=64101) 2023-09-07 13:58:51.317611: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=64101) 2023-09-07 13:58:51.317618: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=64101) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 42147187.54it/s] [repeated 11x across cluster]
(RayTrainWorker pid=64101) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=64101) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=64102) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=64102) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=71294) 2023-09-07 13:59:19.340985: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=71294) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64101) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=71294) 2023-09-07 13:59:19.479380: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=71294) 2023-09-07 13:59:20.227539: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=71294) 2023-09-07 13:59:20.227616: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=71294) 2023-09-07 13:59:20.227623: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=71294) Starting distributed worker processes: ['71407 (10.0.0.84)', '71408 (10.0.0.84)', '71409 (10.0.0.84)']
(RayTrainWorker pid=71407) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=71408) 2023-09-07 13:59:26.852631: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=71408) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71407) 2023-09-07 13:59:26.854221: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=71407) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71408) 2023-09-07 13:59:26.986178: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=71408) 2023-09-07 13:59:27.752593: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=71408) 2023-09-07 13:59:27.752672: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=71408) 2023-09-07 13:59:27.752679: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=71407) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=71407)   rank_zero_warn(
(RayTrainWorker pid=71407) GPU available: True, used: True
(RayTrainWorker pid=71407) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=71407) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=71407) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=71408) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=71408) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=64101) Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/tmpt8k8jglf/MNIST/raw/t10k-labels-idx1-ubyte.gz [repeated 11x across cluster]
(RayTrainWorker pid=64101) Extracting /tmp/tmpt8k8jglf/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpt8k8jglf/MNIST/raw [repeated 11x across cluster]
(RayTrainWorker pid=64101)  [repeated 11x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 100664900.56it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 86590268.41it/s]
(RayTrainWorker pid=71408) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=71407)   | Name     | Type               | Params
(RayTrainWorker pid=71407) ------------------------------------------------
(RayTrainWorker pid=71407) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=71407) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=71407) 2 | layer_2  | Linear             | 8.3 K 
(RayTrainWorker pid=71407) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=71407) ------------------------------------------------
(RayTrainWorker pid=71407) 109 K     Trainable params
(RayTrainWorker pid=71407) 0         Non-trainable params
(RayTrainWorker pid=71407) 109 K     Total params
(RayTrainWorker pid=71407) 0.438     Total estimated model params size (MB)
(RayTrainWorker pid=71407) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=71408) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=71409) 2023-09-07 13:59:26.851614: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=71409) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71409) 2023-09-07 13:59:26.986178: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=71409) 2023-09-07 13:59:27.752674: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=71409) 2023-09-07 13:59:27.752681: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(TrainTrainable pid=73540) 2023-09-07 13:59:38.336002: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=73540) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71409) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 23461242.33it/s] [repeated 11x across cluster]
(RayTrainWorker pid=71407)  [repeated 5x across cluster]
(RayTrainWorker pid=71409) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=71408) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=71409) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/checkpoint_000000) [repeated 2x across cluster]
(TrainTrainable pid=73540) 2023-09-07 13:59:38.476177: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=73540) 2023-09-07 13:59:39.222782: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 2x across cluster]
(TrainTrainable pid=73540) 2023-09-07 13:59:39.222788: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=73540) Starting distributed worker processes: ['73647 (10.0.0.84)', '73648 (10.0.0.84)', '73649 (10.0.0.84)']
(RayTrainWorker pid=73647) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=73648) 2023-09-07 13:59:45.901023: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=73648) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.041760: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=73649) 2023-09-07 13:59:45.964229: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=73649) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.807096: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.807173: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.807180: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=73648) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=73647) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=73647)   rank_zero_warn(
(RayTrainWorker pid=73647) GPU available: True, used: True
(RayTrainWorker pid=73647) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=73647) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=73647) HPU available: False, using: 0 HPUs
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 88411180.44it/s]
 60%|█████▉    | 5931008/9912422 [00:00<00:00, 57942493.14it/s]
(RayTrainWorker pid=73648) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=73648) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpcy67mfe_/MNIST/raw/train-images-idx3-ubyte.gz [repeated 13x across cluster]
(RayTrainWorker pid=71409) Extracting /tmp/tmpmxchio03/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpmxchio03/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=71409)  [repeated 12x across cluster]
(RayTrainWorker pid=73648) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=73647)   | Name     | Type               | Params
(RayTrainWorker pid=73647) ------------------------------------------------
(RayTrainWorker pid=73647) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=73647) 1 | layer_1  | Linear             | 50.2 K
(RayTrainWorker pid=73647) 2 | layer_2  | Linear             | 16.6 K
(RayTrainWorker pid=73647) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=73647) ------------------------------------------------
(RayTrainWorker pid=73647) 69.5 K    Trainable params
(RayTrainWorker pid=73647) 0         Non-trainable params
(RayTrainWorker pid=73647) 69.5 K    Total params
(RayTrainWorker pid=73647) 0.278     Total estimated model params size (MB)
(RayTrainWorker pid=73648) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=73648) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=73647) 2023-09-07 13:59:46.102948: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=73647) 2023-09-07 13:59:45.969366: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=73647) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=73647) 2023-09-07 13:59:46.898646: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=73647) 2023-09-07 13:59:46.898654: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=73647) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 45575427.67it/s] [repeated 11x across cluster]
(RayTrainWorker pid=73647)  [repeated 4x across cluster]
(RayTrainWorker pid=73647) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=73647) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=73648) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=73648) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=80840) 2023-09-07 14:00:14.333330: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=80840) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(TrainTrainable pid=80840) 2023-09-07 14:00:14.472277: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=73647) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=80840) 2023-09-07 14:00:15.216259: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=80840) 2023-09-07 14:00:15.216329: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=80840) 2023-09-07 14:00:15.216336: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=80840) Starting distributed worker processes: ['80950 (10.0.0.84)', '80951 (10.0.0.84)', '80952 (10.0.0.84)']
(RayTrainWorker pid=80950) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=80950) 2023-09-07 14:00:21.817341: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=80950) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80951) 2023-09-07 14:00:21.817340: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=80951) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80950) 2023-09-07 14:00:21.952950: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=80950) 2023-09-07 14:00:22.721445: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=80950) 2023-09-07 14:00:22.721524: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=80950) 2023-09-07 14:00:22.721531: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=80950) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=80950)   rank_zero_warn(
(RayTrainWorker pid=80950) GPU available: True, used: True
(RayTrainWorker pid=80950) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=80950) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=80950) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=80950) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=80950) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=80950) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpdj6sv23q/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=73647) Extracting /tmp/tmpjm0jv6rr/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpjm0jv6rr/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=73647)  [repeated 12x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 120421348.01it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 111998101.50it/s]
(RayTrainWorker pid=80950) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=80950)   | Name     | Type               | Params
(RayTrainWorker pid=80950) ------------------------------------------------
(RayTrainWorker pid=80950) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=80950) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=80950) 2 | layer_2  | Linear             | 8.3 K 
(RayTrainWorker pid=80950) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=80950) ------------------------------------------------
(RayTrainWorker pid=80950) 109 K     Trainable params
(RayTrainWorker pid=80950) 0         Non-trainable params
(RayTrainWorker pid=80950) 109 K     Total params
(RayTrainWorker pid=80950) 0.438     Total estimated model params size (MB)
(RayTrainWorker pid=80950) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=80950) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=80952) 2023-09-07 14:00:21.817339: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=80952) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80952) 2023-09-07 14:00:21.952959: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=80952) 2023-09-07 14:00:22.721494: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=80952) 2023-09-07 14:00:22.721502: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=80952) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 39279440.76it/s] [repeated 11x across cluster]
(RayTrainWorker pid=80950) 
(RayTrainWorker pid=80952) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=80952) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=80950) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/checkpoint_000003) [repeated 9x across cluster]
(TrainTrainable pid=88077) 2023-09-07 14:00:43.334099: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=88077) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80952) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/checkpoint_000004) [repeated 5x across cluster]
(TrainTrainable pid=88077) 2023-09-07 14:00:43.474522: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=88077) 2023-09-07 14:00:44.217911: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=88077) 2023-09-07 14:00:44.217986: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=88077) 2023-09-07 14:00:44.217994: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=88077) Starting distributed worker processes: ['88184 (10.0.0.84)', '88185 (10.0.0.84)', '88186 (10.0.0.84)']
(RayTrainWorker pid=88184) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=88186) 2023-09-07 14:00:50.980950: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=88186) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88185) 2023-09-07 14:00:50.969448: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=88185) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.106653: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.878087: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.878157: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.878165: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=88186) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=88184) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=88184)   rank_zero_warn(
(RayTrainWorker pid=88184) GPU available: True, used: True
(RayTrainWorker pid=88184) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=88184) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=88184) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=88186) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=88186) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpd1qkzrfz/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=80951) Extracting /tmp/tmpyrcbok27/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpyrcbok27/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=80951)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 135946084.34it/s]
 61%|██████▏   | 6094848/9912422 [00:00<00:00, 60581952.53it/s]
(RayTrainWorker pid=88186) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=88184)   | Name     | Type               | Params
(RayTrainWorker pid=88184) ------------------------------------------------
(RayTrainWorker pid=88184) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=88184) 1 | layer_1  | Linear             | 25.1 K
(RayTrainWorker pid=88184) 2 | layer_2  | Linear             | 4.2 K 
(RayTrainWorker pid=88184) 3 | layer_3  | Linear             | 1.3 K 
(RayTrainWorker pid=88184) ------------------------------------------------
(RayTrainWorker pid=88184) 30.6 K    Trainable params
(RayTrainWorker pid=88184) 0         Non-trainable params
(RayTrainWorker pid=88184) 30.6 K    Total params
(RayTrainWorker pid=88184) 0.123     Total estimated model params size (MB)
(RayTrainWorker pid=88186) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=88186) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=88184) 2023-09-07 14:00:50.969450: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=88184) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88184) 2023-09-07 14:00:51.106653: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=88184) 2023-09-07 14:00:51.876301: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=88184) 2023-09-07 14:00:51.876309: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=88184) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 47154774.18it/s] [repeated 11x across cluster]
(RayTrainWorker pid=88184)  [repeated 2x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 87231776.04it/s]
(RayTrainWorker pid=88184) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=88184) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=88186) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=88186) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=95388) 2023-09-07 14:01:20.343383: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=95388) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88184) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=95388) 2023-09-07 14:01:20.484476: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=95388) 2023-09-07 14:01:21.230226: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=95388) 2023-09-07 14:01:21.230300: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=95388) 2023-09-07 14:01:21.230307: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=95388) Starting distributed worker processes: ['95492 (10.0.0.84)', '95493 (10.0.0.84)', '95494 (10.0.0.84)']
(RayTrainWorker pid=95492) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=95494) 2023-09-07 14:01:27.861861: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=95494) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95492) 2023-09-07 14:01:27.861862: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=95492) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95494) 2023-09-07 14:01:27.995553: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=95494) 2023-09-07 14:01:28.761910: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=95494) 2023-09-07 14:01:28.761983: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=95494) 2023-09-07 14:01:28.761990: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=95492) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=95492)   rank_zero_warn(
(RayTrainWorker pid=95492) GPU available: True, used: True
(RayTrainWorker pid=95492) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=95492) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=95492) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=95492) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=95494) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=95494) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpkvf1rrst/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=88184) Extracting /tmp/tmppk4zrz1w/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmppk4zrz1w/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=88184)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 117459779.70it/s]
 74%|███████▍  | 7372800/9912422 [00:00<00:00, 73213483.02it/s]
(RayTrainWorker pid=95494) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=95492)   | Name     | Type               | Params
(RayTrainWorker pid=95492) ------------------------------------------------
(RayTrainWorker pid=95492) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=95492) 1 | layer_1  | Linear             | 50.2 K
(RayTrainWorker pid=95492) 2 | layer_2  | Linear             | 4.2 K 
(RayTrainWorker pid=95492) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=95492) ------------------------------------------------
(RayTrainWorker pid=95492) 55.1 K    Trainable params
(RayTrainWorker pid=95492) 0         Non-trainable params
(RayTrainWorker pid=95492) 55.1 K    Total params
(RayTrainWorker pid=95492) 0.220     Total estimated model params size (MB)
(RayTrainWorker pid=95494) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=95494) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=95493) 2023-09-07 14:01:27.861861: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=95493) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95493) 2023-09-07 14:01:27.995552: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=95493) 2023-09-07 14:01:28.758718: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=95493) 2023-09-07 14:01:28.758742: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=95494) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 48598287.67it/s] [repeated 10x across cluster]
(RayTrainWorker pid=95492)  [repeated 4x across cluster]
(RayTrainWorker pid=95493) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=95493) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=95494) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(TrainTrainable pid=101434) 2023-09-07 14:01:53.326795: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=101434) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95493) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/checkpoint_000003) [repeated 5x across cluster]
(TrainTrainable pid=101434) 2023-09-07 14:01:53.463803: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=101434) 2023-09-07 14:01:54.201636: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=101434) 2023-09-07 14:01:54.201711: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=101434) 2023-09-07 14:01:54.201718: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=101434) Starting distributed worker processes: ['101544 (10.0.0.84)', '101545 (10.0.0.84)', '101546 (10.0.0.84)']
(RayTrainWorker pid=101544) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=101545) 2023-09-07 14:02:00.834273: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=101545) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101544) 2023-09-07 14:02:00.834274: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=101544) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101545) 2023-09-07 14:02:00.968155: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=101545) 2023-09-07 14:02:01.736107: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=101545) 2023-09-07 14:02:01.736184: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=101545) 2023-09-07 14:02:01.736191: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=101545) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=101544) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=101544)   rank_zero_warn(
(RayTrainWorker pid=101544) GPU available: True, used: True
(RayTrainWorker pid=101544) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=101544) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=101544) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=101545) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=95492) Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/tmpyy7a6r11/MNIST/raw/t10k-labels-idx1-ubyte.gz [repeated 11x across cluster]
(RayTrainWorker pid=95492) Extracting /tmp/tmpyy7a6r11/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpyy7a6r11/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=95492)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 104607984.65it/s]
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/train-labels-idx1-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/t10k-images-idx3-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=101544)   | Name     | Type               | Params
(RayTrainWorker pid=101544) ------------------------------------------------
(RayTrainWorker pid=101544) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=101544) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=101544) 2 | layer_2  | Linear             | 33.0 K
(RayTrainWorker pid=101544) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=101544) ------------------------------------------------
(RayTrainWorker pid=101544) 136 K     Trainable params
(RayTrainWorker pid=101544) 0         Non-trainable params
(RayTrainWorker pid=101544) 136 K     Total params
(RayTrainWorker pid=101544) 0.544     Total estimated model params size (MB)
(RayTrainWorker pid=101545) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=101545) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=101546) 2023-09-07 14:02:00.834275: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=101546) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101546) 2023-09-07 14:02:00.968160: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=101546) 2023-09-07 14:02:01.736182: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=101546) 2023-09-07 14:02:01.736190: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=101546) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 38642046.18it/s] [repeated 11x across cluster]
(RayTrainWorker pid=101544)  [repeated 3x across cluster]
(RayTrainWorker pid=101546) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=101544) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=101545) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=101545) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=108750) 2023-09-07 14:02:30.387715: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=108750) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101546) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=108750) 2023-09-07 14:02:30.526490: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=108750) 2023-09-07 14:02:31.271200: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=108750) 2023-09-07 14:02:31.271270: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=108750) 2023-09-07 14:02:31.271277: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=108750) Starting distributed worker processes: ['108861 (10.0.0.84)', '108862 (10.0.0.84)', '108863 (10.0.0.84)']
(RayTrainWorker pid=108861) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.000239: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=108862) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108863) 2023-09-07 14:02:38.000240: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=108863) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.137493: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.911788: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.911870: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.911877: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=108861) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=108861)   rank_zero_warn(
(RayTrainWorker pid=108861) GPU available: True, used: True
(RayTrainWorker pid=108861) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=108861) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=108861) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=108862) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=108863) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=101546) Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/tmpt_if2tuu/MNIST/raw/t10k-labels-idx1-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=101546) Extracting /tmp/tmpt_if2tuu/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpt_if2tuu/MNIST/raw [repeated 8x across cluster]
(RayTrainWorker pid=101546)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 111226266.99it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 89971437.39it/s]
(RayTrainWorker pid=108862) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=108861)   | Name     | Type               | Params
(RayTrainWorker pid=108861) ------------------------------------------------
(RayTrainWorker pid=108861) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=108861) 1 | layer_1  | Linear             | 25.1 K
(RayTrainWorker pid=108861) 2 | layer_2  | Linear             | 2.1 K 
(RayTrainWorker pid=108861) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=108861) ------------------------------------------------
(RayTrainWorker pid=108861) 27.9 K    Trainable params
(RayTrainWorker pid=108861) 0         Non-trainable params
(RayTrainWorker pid=108861) 27.9 K    Total params
(RayTrainWorker pid=108861) 0.112     Total estimated model params size (MB)
(RayTrainWorker pid=108862) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=108862) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.000239: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=108861) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.137493: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.911832: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.911839: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=108861) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 42054147.39it/s] [repeated 11x across cluster]
(autoscaler +11m23s) [workspace snapshot] New snapshot created successfully (Size: 327.01 KB)
(TrainTrainable pid=111019) 2023-09-07 14:02:51.352608: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=111019) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108861)  [repeated 3x across cluster]
(RayTrainWorker pid=108861) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=108861) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=108861) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/checkpoint_000000) [repeated 2x across cluster]
(TrainTrainable pid=111019) 2023-09-07 14:02:51.493509: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=111019) 2023-09-07 14:02:52.239731: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=111019) 2023-09-07 14:02:52.239805: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=111019) 2023-09-07 14:02:52.239812: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=111019) Starting distributed worker processes: ['111129 (10.0.0.84)', '111130 (10.0.0.84)', '111131 (10.0.0.84)']
(RayTrainWorker pid=111129) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=111131) 2023-09-07 14:02:58.909958: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=111131) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111130) 2023-09-07 14:02:58.910530: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=111130) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.041760: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.809607: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.809682: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.809690: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=111129) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=111129)   rank_zero_warn(
(RayTrainWorker pid=111129) GPU available: True, used: True
(RayTrainWorker pid=111129) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=111129) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=111129) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=111131) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=111131) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=111131) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpddnnc0iv/MNIST/raw/train-images-idx3-ubyte.gz [repeated 13x across cluster]
(RayTrainWorker pid=108863) Extracting /tmp/tmpxcg0v86z/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpxcg0v86z/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=108863)  [repeated 12x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 109686001.97it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 81254614.76it/s]
100%|██████████| 1648877/1648877 [00:00<00:00, 35741410.23it/s]
(RayTrainWorker pid=111131) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=111129)   | Name     | Type               | Params
(RayTrainWorker pid=111129) ------------------------------------------------
(RayTrainWorker pid=111129) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=111129) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=111129) 2 | layer_2  | Linear             | 33.0 K
(RayTrainWorker pid=111129) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=111129) ------------------------------------------------
(RayTrainWorker pid=111129) 136 K     Trainable params
(RayTrainWorker pid=111129) 0         Non-trainable params
(RayTrainWorker pid=111129) 136 K     Total params
(RayTrainWorker pid=111129) 0.544     Total estimated model params size (MB)
(RayTrainWorker pid=111131) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=111131) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=111129) 2023-09-07 14:02:58.906403: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=111129) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111129) 2023-09-07 14:02:59.041757: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=111129) 2023-09-07 14:02:59.809306: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=111129) 2023-09-07 14:02:59.809314: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=111129) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 37135533.66it/s] [repeated 11x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 92298990.88it/s]
(RayTrainWorker pid=111129)  [repeated 2x across cluster]
(RayTrainWorker pid=111129) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=111129) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=111131) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000003) [repeated 9x across cluster]
(TrainTrainable pid=118255) 2023-09-07 14:03:20.351292: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=118255) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111129) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000004) [repeated 5x across cluster]
(TrainTrainable pid=118255) 2023-09-07 14:03:20.492641: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=118255) 2023-09-07 14:03:21.239037: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=118255) 2023-09-07 14:03:21.239106: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=118255) 2023-09-07 14:03:21.239113: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=118255) Starting distributed worker processes: ['118362 (10.0.0.84)', '118363 (10.0.0.84)', '118364 (10.0.0.84)']
(RayTrainWorker pid=118362) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=118363) 2023-09-07 14:03:27.930188: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=118363) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=118364) 2023-09-07 14:03:27.917602: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=118364) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.052415: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.822569: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.822644: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.822652: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=118363) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=118362) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=118362)   rank_zero_warn(
(RayTrainWorker pid=118362) GPU available: True, used: True
(RayTrainWorker pid=118362) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=118362) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=118362) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=118364) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=118364) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmp0sbwiedt/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=111130) Extracting /tmp/tmpfmuq9_qh/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpfmuq9_qh/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=111130)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 109752309.17it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 92575620.67it/s]
(RayTrainWorker pid=118363) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=118362)   | Name     | Type               | Params
(RayTrainWorker pid=118362) ------------------------------------------------
(RayTrainWorker pid=118362) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=118362) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=118362) 2 | layer_2  | Linear             | 16.5 K
(RayTrainWorker pid=118362) 3 | layer_3  | Linear             | 1.3 K 
(RayTrainWorker pid=118362) ------------------------------------------------
(RayTrainWorker pid=118362) 118 K     Trainable params
(RayTrainWorker pid=118362) 0         Non-trainable params
(RayTrainWorker pid=118362) 118 K     Total params
(RayTrainWorker pid=118362) 0.473     Total estimated model params size (MB)
(RayTrainWorker pid=118363) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=118363) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=118362) 2023-09-07 14:03:27.912682: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=118362) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=118362) 2023-09-07 14:03:28.050355: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=118362) 2023-09-07 14:03:28.816159: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=118362) 2023-09-07 14:03:28.816166: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=118362) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 42810177.01it/s] [repeated 11x across cluster]
(RayTrainWorker pid=118362)  [repeated 4x across cluster]
(RayTrainWorker pid=118362) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=118362) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=118363) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=118363) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
2023-09-07 14:03:52,186	INFO tune.py:1143 -- Total run time: 313.94 seconds (313.92 seconds for the tuning loop).
results.get_best_result(metric="ptl/val_accuracy", mode="max")
Result(
  metrics={'ptl/train_loss': 0.00108961365185678, 'ptl/train_accuracy': 1.0, 'ptl/val_loss': 0.05798737704753876, 'ptl/val_accuracy': 0.9820601940155029, 'epoch': 4, 'step': 1435},
  path='/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38',
  filesystem='local',
  checkpoint=Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000004)
)

正如你在 training_iteration 列中看到的,损失高(准确率低)的试验已被提前终止。性能最佳的试验使用了 batch_size=64, layer_1_size=128, layer_2_size=256, 和 lr=0.0037

更多 PyTorch Lightning 示例#

[基础] 使用 Ray Train 训练一个 PyTorch Lightning 图像分类器