Ray 程序测试技巧#
由于并行程序的特性,测试 Ray 程序可能有点棘手。我们整理了一系列关于 Ray 程序常见测试实践的技巧和诀窍。
技巧 1:使用 ray.init(num_cpus=...)
固定资源数量#
默认情况下,ray.init()
会检测您本地机器/集群上的 CPU 和 GPU 数量。
然而,您的测试环境可能具有明显较低的资源数量。例如,TravisCI 构建环境只有 2 核
如果测试依赖于 ray.init()
编写,它们可能隐含地依赖于更大的多核机器。
这很容易导致测试出现意想不到、不稳定或错误的行为,且难以重现。
为了克服这一点,您应该通过在 ray.init
中设置检测到的资源来覆盖它们,例如:ray.init(num_cpus=2)
技巧 2:如果可能,在测试之间共享 Ray 集群#
最安全的方法是为每个测试启动一个新的 Ray 集群。
import unittest
class RayTest(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4, num_gpus=0)
def tearDown(self):
ray.shutdown()
然而,启动和停止 Ray 集群实际上会产生相当大的延迟。例如,在典型的 Macbook Pro 笔记本电脑上,启动和停止可能需要近 5 秒
python -c 'import ray; ray.init(); ray.shutdown()' 3.93s user 1.23s system 116% cpu 4.420 total
在 20 个测试中,这将增加 90 秒的额外开销。
跨测试重用 Ray 集群可以显著提高您的测试套件速度。这将开销降低到一个恒定的分摊量
class RayClassTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Start it once for the entire test suite/module
ray.init(num_cpus=4, num_gpus=0)
@classmethod
def tearDownClass(cls):
ray.shutdown()
根据您的应用程序,在某些情况下跨测试重用 Ray 集群可能不安全。例如
如果您的应用程序依赖于为每个进程设置环境变量。
如果您的远程 actor/任务设置了任何进程级的全局变量。
技巧 3:使用 ray.cluster_utils.Cluster
创建一个迷你集群#
如果您正在为集群环境编写应用程序,您可能希望模拟一个多节点 Ray 集群。这可以通过 ray.cluster_utils.Cluster
实用工具来完成。
注意
在 Windows 上,多节点 Ray 集群的支持目前是实验性的且未经测试。如果您遇到问题,请在 ray-project/ray#issues 提交报告。
from ray.cluster_utils import Cluster
# Starts a head-node for the cluster.
cluster = Cluster(
initialize_head=True,
head_node_args={
"num_cpus": 10,
})
启动集群后,您可以在同一个进程中执行典型的 Ray 脚本
import ray
ray.init(address=cluster.address)
@ray.remote
def f(x):
return x
for _ in range(1):
ray.get([f.remote(1) for _ in range(1000)])
for _ in range(10):
ray.get([f.remote(1) for _ in range(100)])
for _ in range(100):
ray.get([f.remote(1) for _ in range(10)])
for _ in range(1000):
ray.get([f.remote(1) for _ in range(1)])
您还可以添加多个节点,每个节点具有不同的资源数量
mock_node = cluster.add_node(num_cpus=10)
assert ray.cluster_resources()["CPU"] == 20
您还可以移除节点,这在测试故障处理逻辑时很有用
cluster.remove_node(mock_node)
assert ray.cluster_resources()["CPU"] == 10
更多详情请参阅 集群实用工具。
技巧 4:并行运行测试时要小心#
由于 Ray 会启动多种服务,如果一次启动的服务过多,很容易触发超时。因此,当使用 pytest xdist 等工具并行运行多个测试时,应注意这可能会给测试环境带来不稳定性。