使用 Ray Train 微调 PyTorch 图像分类器#
本示例使用 Ray Train 微调预训练的 ResNet 模型。
在此示例中,网络架构由预训练 ResNet 模型的中间层输出组成,该输出输入到一个随机初始化的线性层,该线性层为我们的新任务输出分类 logits。
加载并预处理微调数据集#
本示例改编自 PyTorch 的微调 Torchvision 模型教程。我们将使用 hymenoptera_data 作为微调数据集,该数据集包含两类(蜜蜂和蚂蚁)共 397 张图像(涵盖训练集和验证集)。这是一个相当小的数据集,仅用于演示目的。
该数据集可在此处公开获取。请注意,该数据集的结构是将目录名称作为标签。使用 torchvision.datasets.ImageFolder()
加载图像及其对应的标签。
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, models, transforms
import numpy as np
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
"train": transforms.Compose(
[
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
),
"val": transforms.Compose(
[
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
),
}
def download_datasets():
os.system(
"wget https://download.pytorch.org/tutorial/hymenoptera_data.zip >/dev/null 2>&1"
)
os.system("unzip hymenoptera_data.zip >/dev/null 2>&1")
# Download and build torch datasets
def build_datasets():
torch_datasets = {}
for split in ["train", "val"]:
torch_datasets[split] = datasets.ImageFolder(
os.path.join("./hymenoptera_data", split), data_transforms[split]
)
return torch_datasets
初始化模型和微调配置#
接下来,我们定义训练配置,稍后会将其传递到训练循环函数中。
train_loop_config = {
"input_size": 224, # Input image size (224 x 224)
"batch_size": 32, # Batch size for training
"num_epochs": 10, # Number of epochs to train for
"lr": 0.001, # Learning Rate
"momentum": 0.9, # SGD optimizer momentum
}
接下来,我们定义我们的模型。你可以从预训练权重创建模型,或者从之前的运行中重新加载模型检查点。
import os
import torch
from ray.train import Checkpoint
# Option 1: Initialize model with pretrained weights
def initialize_model():
# Load pretrained model params
model = models.resnet50(pretrained=True)
# Replace the original classifier with a new Linear layer
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 2)
# Ensure all params get updated during finetuning
for param in model.parameters():
param.requires_grad = True
return model
# Option 2: Initialize model with an Train checkpoint
# Replace this with your own uri
CHECKPOINT_FROM_S3 = Checkpoint(
path="s3://air-example-data/finetune-resnet-checkpoint/TorchTrainer_4f69f_00000_0_2023-02-14_14-04-09/checkpoint_000001/"
)
def initialize_model_from_checkpoint(checkpoint: Checkpoint):
with checkpoint.as_directory() as tmpdir:
state_dict = torch.load(os.path.join(tmpdir, "checkpoint.pt"))
resnet50 = initialize_model()
resnet50.load_state_dict(state_dict["model"])
return resnet50
定义训练循环#
The train_loop_per_worker
函数定义了每个 worker 的微调过程。
1. 为每个 worker 准备 dataloader:
本教程假设你使用 PyTorch 原生的
torch.utils.data.Dataset
作为数据输入。train.torch.prepare_data_loader()
为分布式执行准备你的 dataLoader。你也可以使用 Ray Data 进行更高效的预处理。有关使用 Ray Data 处理图像的更多详细信息,请参阅 处理图像 的 Ray Data 用户指南。
2. 准备你的模型:
train.torch.prepare_model()
为分布式训练准备模型。在底层,它将你的 torch 模型转换为DistributedDataParallel
模型,该模型会在所有 worker 上同步其权重。
3. 报告指标和检查点:
train.report()
将向 Ray Train 报告指标和检查点。通过
train.report(metrics, checkpoint=...)
保存检查点将自动上传检查点到云存储(如果配置),并允许你将来轻松启用 Ray Train worker 容错。
import os
from tempfile import TemporaryDirectory
import ray.train as train
from ray.train import Checkpoint
def evaluate(logits, labels):
_, preds = torch.max(logits, 1)
corrects = torch.sum(preds == labels).item()
return corrects
def train_loop_per_worker(configs):
import warnings
warnings.filterwarnings("ignore")
# Calculate the batch size for a single worker
worker_batch_size = configs["batch_size"] // train.get_context().get_world_size()
# Download dataset once on local rank 0 worker
if train.get_context().get_local_rank() == 0:
download_datasets()
torch.distributed.barrier()
# Build datasets on each worker
torch_datasets = build_datasets()
# Prepare dataloader for each worker
dataloaders = dict()
dataloaders["train"] = DataLoader(
torch_datasets["train"], batch_size=worker_batch_size, shuffle=True
)
dataloaders["val"] = DataLoader(
torch_datasets["val"], batch_size=worker_batch_size, shuffle=False
)
# Distribute
dataloaders["train"] = train.torch.prepare_data_loader(dataloaders["train"])
dataloaders["val"] = train.torch.prepare_data_loader(dataloaders["val"])
device = train.torch.get_device()
# Prepare DDP Model, optimizer, and loss function
model = initialize_model()
model = train.torch.prepare_model(model)
optimizer = optim.SGD(
model.parameters(), lr=configs["lr"], momentum=configs["momentum"]
)
criterion = nn.CrossEntropyLoss()
# Start training loops
for epoch in range(configs["num_epochs"]):
# Each epoch has a training and validation phase
for phase in ["train", "val"]:
if phase == "train":
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
if train.get_context().get_world_size() > 1:
dataloaders[phase].sampler.set_epoch(epoch)
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
with torch.set_grad_enabled(phase == "train"):
# Get model outputs and calculate loss
outputs = model(inputs)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == "train":
loss.backward()
optimizer.step()
# calculate statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += evaluate(outputs, labels)
size = len(torch_datasets[phase]) // train.get_context().get_world_size()
epoch_loss = running_loss / size
epoch_acc = running_corrects / size
if train.get_context().get_world_rank() == 0:
print(
"Epoch {}-{} Loss: {:.4f} Acc: {:.4f}".format(
epoch, phase, epoch_loss, epoch_acc
)
)
# Report metrics and checkpoint every epoch
if phase == "val":
with TemporaryDirectory() as tmpdir:
state_dict = {
"epoch": epoch,
"model": model.module.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
torch.save(state_dict, os.path.join(tmpdir, "checkpoint.pt"))
train.report(
metrics={"loss": epoch_loss, "acc": epoch_acc},
checkpoint=Checkpoint.from_directory(tmpdir),
)
接下来,设置 TorchTrainer
from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig, RunConfig, CheckpointConfig
# Scale out model training across 4 GPUs.
scaling_config = ScalingConfig(
num_workers=4, use_gpu=True, resources_per_worker={"CPU": 1, "GPU": 1}
)
# Save the latest checkpoint
checkpoint_config = CheckpointConfig(num_to_keep=1)
# Set experiment name and checkpoint configs
run_config = RunConfig(
name="finetune-resnet",
storage_path="/tmp/ray_results",
checkpoint_config=checkpoint_config,
)
trainer = TorchTrainer(
train_loop_per_worker=train_loop_per_worker,
train_loop_config=train_loop_config,
scaling_config=scaling_config,
run_config=run_config,
)
result = trainer.fit()
print(result)
加载检查点进行预测:#
元数据和检查点已经保存在 TorchTrainer 中指定的 storage_path
中
现在我们需要加载训练好的模型并在测试数据上进行评估。最佳模型参数已保存在 log_dir
中。我们可以使用之前定义的 initialize_model_from_checkpoint()
函数加载微调运行产生的检查点。
model = initialize_model_from_checkpoint(result.checkpoint)
device = torch.device("cuda")
最后,定义一个简单的评估循环并检查检查点模型的性能。
model = model.to(device)
model.eval()
download_datasets()
torch_datasets = build_datasets()
dataloader = DataLoader(torch_datasets["val"], batch_size=32, num_workers=4)
corrects = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
preds = model(inputs)
corrects += evaluate(preds, labels)
print("Accuracy: ", corrects / len(dataloader.dataset))
Accuracy: 0.934640522875817